Berman Codes: A Generalization of Reed-Muller Codes that Achieve BEC Capacity

نویسندگان

چکیده

We identify a family of binary codes whose structure is similar to Reed-Muller (RM) and which include RM as strict subclass. The in this are denoted Cn ( xmlns:xlink="http://www.w3.org/1999/xlink">r,m ), their duals xmlns:xlink="http://www.w3.org/1999/xlink">Bn ). length these xmlns:xlink="http://www.w3.org/1999/xlink">nm , where xmlns:xlink="http://www.w3.org/1999/xlink">n ≥ 2, xmlns:xlink="http://www.w3.org/1999/xlink">r ‘order’. When = ) the code order 2 m . special case corresponding being an odd prime was studied by Berman (1967) Blackmore Norton (2001). Following terminology introduced Norton, we refer xmlns:xlink="http://www.w3.org/1999/xlink">Berman code xmlns:xlink="http://www.w3.org/1999/xlink">dual Berman code. using recursive Plotkin-like construction, show that have rich automorphism group, they generated minimum weight codewords, can be decoded up half distance efficiently. Using result Kumar et al. (2016), achieve capacity erasure channel (BEC) under bit-MAP decoding. Furthermore, except double transitivity, satisfy all properties used Reeves Pfister binary-input memoryless symmetric channels. Finally, when odd, large class abelian includes achieves BEC capacity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another Generalization of the Reed-Muller Codes

The punctured binary Reed-Muller code is cyclic and was generalized into the punctured generalized ReedMuller code over GF(q) in the literature. The major objective of this paper is to present another generalization of the punctured binary Reed-Muller code. Another objective is to construct a family of reversible cyclic codes that are related to the newly generalized Reed-Muller codes. Index Te...

متن کامل

Quantum Reed-Muller Codes

This paper presents a set of quantum Reed-Muller codes which are typically 100 times more effective than existing quantum Reed-Muller codes. The code parameters are [[n, k, d]] = [[2, ∑r l=0 C(m, l) − ∑m−r−1 l=0 C(m, l), 2 m−r ]] where 2r + 1 > m > r.

متن کامل

Generalized Reed-Muller Codes

the possible choices for n and k are rather thinly distributed in the class of all pairs (n, k) with k ~ n--and it is, therefore, often inefficient to make use of such codes in concrete situations (that is, when a desired pair (n, k) is far from any achievable pair). We have succeeded in overcoming this difficulty by generalizing the Reed-Muller codes in such a way that they exist for every pai...

متن کامل

Quantum Reed-Muller codes

A set of quantum error correcting codes based on classical Reed-Muller codes is described. The codes have parameters [[n, k, d]] = [[2r, 2r −C(r, t)− 2 ∑t−1 i=0 C(r, i), 2 t + 2t−1]]. The study of quantum information is currently stimulating much interest. Most of the basic concepts of classical information theory have counterparts in quantum information theory, and among these is the idea of a...

متن کامل

Projective Reed - Muller Codes

R~sum~. On inlroduit une classe de codes lintaires de la famille des codes de Reed-Muller, les codes de Reed-Muller projectifs. Ces codes sont des extensions des codes de Reed-Muller gtntralists ; les codes de Reed-Muller projectifs d'ordre I atteignent la borne de Plotkin. On donne les traram&res des codes de Reed-Muller projecfifs d'ordre 2. 1.Introduction We note pm(Fq) the projective space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2023

ISSN: ['0018-9448', '1557-9654']

DOI: https://doi.org/10.1109/tit.2023.3299287